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Abstract. Future climate change projections, impacts and mitigation targets are directly affected by how sensitive Earth’s 10 

global mean surface temperature is to anthropogenic forcing, expressed via the effective climate sensitivity (ECS) and 

transient climate response (TCR). However, the ECS and TCR are poorly constrained, in part because historic observations 

and future climate projections consider the climate system under different response timescales with potentially different 

climate feedback strengths. Here, we evaluate ECS and TCR by using historic observations of surface warming, since the 

mid-19th century, and ocean heat uptake, since the mid 20th century, to constrain a model with independent climate feedback 15 

components acting over multiple response timescales. Adopting a Bayesian approach, our prior uses a constrained 

distribution for the instantaneous Planck feedback combined with wide-ranging uniform distributions of the strengths of the 

fast feedbacks (acting over several days) and slow feedbacks (acting over decades). We extract posterior distributions by 

applying likelihood functions derived from different combinations of observational datasets. The resulting TCR distributions 

are similar when using different historic datasets: from a TCR of 1.5 (1.3 to 1.7 at 5-95% range) °C, up to 1.7 (1.4 to 2.0) °C. 20 

However, the posterior probability distribution for ECS on a 100-year response timescale varies depending on which 

combinations of temperature and heat content anomaly datasets are used: from ECS of 2.2 (1.5 to 4.5) °C, for datasets with 

less historic warming, up to 2.8 (1.8 to 6.1) °C, for datasets with more historic warming. Our results demonstrate how 

differences between historic climate reconstructions imply significant differences in expected future global warming. 

1 Introduction 25 

A key goal in climate science is to evaluate how sensitive global mean temperature anomaly is to radiative forcing from 

greenhouse gasses and aerosols (e.g. Knutti et al., 2017; IPCC, 2013). This sensitivity of climate may be explored by 

considering how a global surface temperature anomaly affects Earth’s radiation balance. The effective climate feedback, 

𝜆"## (Wm-2K-1), expresses the how surface warming increases outgoing radiation at the top of the atmosphere. 𝜆"## at some 

time 𝑡 is calculated from the total radiative forcing, 𝑅&'&() (Wm-2), the net top-of-atmosphere energy imbalance, 𝑁 (Wm-2), 30 

and the global surface temperature anomaly, Δ𝑇 (K), via 
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𝜆"##(𝑡) = 0𝑅&'&()(𝑡) − 𝑁(𝑡)2 Δ𝑇(𝑡)⁄  

            (1) 

where both 𝑅&'&() and Δ𝑇 are defined as zero at some preindustrial state. The Effective Climate Sensitivity at some time 𝑡, 35 

ECS(𝑡) in K, is then defined as the radiative forcing for a doubling of CO2, 𝑅4×674, divided by 𝜆"##(𝑡), 

 

ECS(𝑡) =
𝑅4×674
𝜆"##(𝑡)

=
𝑅4×674Δ𝑇(𝑡)

𝑅&'&()(𝑡) − 𝑁(𝑡)
 

            (2) 

ECS and 𝜆"## may be evaluated from estimates of historic radiative forcing and observational constraints on Δ𝑇 and 𝑁, eqns. 40 

(1, 2); noting that Earth’s energy imbalance, 𝑁, can be observationally constrained as a time-average through reconstructing 

the heat content changes in the Earth system dominated by the ocean (e.g. Cheng et al., 2017; Levitus et al., 2012). 

 

Many previous studies evaluating ECS from historical observational data and radiative forcing estimates, eq. (2), have either 

calculated a single constant climate sensitivity (see Annan, 2015; Anan and Hargreaves, 2020; Bodman and Jones, 2016; 45 

Lewis and Curry, 2014; Sherwood et al., 2020; Skeie et al, 2018; Otto et al., 2013), or have evaluated ECS for specific 

historic periods (e.g. Tokarska et al., 2020), acknowledging that the value for the specific historical period may not apply for 

all timescales into the future.  

 

The assumption of a single constant ECS over time leads to uncertainties arising from model inadequacy (Annan, 2015), 50 

since climate sensitivity may not be constant with time or across different response timescales (e.g. Rugenstein et al., 2020; 

Rohling et al., 2012; 2018; Goodwin, 2018; Knutti et al., 2017; Senior and Mitchell, 2000; Proistosescu and Huybers, 2017). 

There is also the possibility that, at any given time or timescale, the climate feedback may be different for different sources 

of radiative forcing, such as well mixed greenhouse gasses and volcanic aerosols (e.g. Marvel et al., 2015).  

 55 

The aim here is to perform Bayesian probabilistic evaluations of both ECS and transient climate response (TCR in K), using 

observational constraints on global surface temperature and ocean heat content anomalies to constrain a model framework 

that includes time-varying climate feedbacks, eqns. (1, 2). Our estimates are independent of simulated warming responses in 

complex climate models. 

 60 

We utilise a numerical model where multiple climate feedbacks each respond to radiative forcing over different timescales 

(Goodwin, 2018), allowing 𝜆"## to vary over time (eqns. 1,2). Generating a prior model ensemble with varying fast and slow 

climate feedback strengths, we extract four posterior ensembles using a Bayesian comparison to observational 
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reconstructions. Each posterior ensemble applies a different combination of historic reconstructions of global surface 

temperature anomaly (either HadCRUT4: Morice et al., 2012; or Cowtan&Way version 2.0 ‘HadCRUT4 infilled by kriging’: 65 

Cowtan & Way, 2014) and reconstruction of ocean heat content anomaly (either NODC: Levitus et al., 2012; or Cheng et al: 

Cheng et al., 2017). All our posterior ensembles are extracted using the additional constraints from HadSST3.1 (Kennedy et 

al., 2011) and Global Carbon Budget (le Quéré et al., 2018) for sea surface temperature and ocean carbon uptake anomalies 

respectively. 

2 Model of surface warming from time-varying climate feedback 70 

Quisque Equation (1) considers surface warming via a single effective climate feedback response to total radiative forcing, 

where the effective climate feedback represents an aggregated response to multiple climate feedbacks to multiple sources of 

radiative forcing. Here, surface warming is modelled as an extended energy balance response to 𝑖 sources of radiative forcing 

by 𝑗 climate feedbacks operating over different response timescales (Goodwin, 2018), 

 75 

Δ𝑇(𝑡) = :1 −
𝑁(𝑡)

𝑅&'&()(𝑡)
<= >

𝑅?(𝑡)
𝜆@)(ABC + ∑ 𝜆?,G(𝑡)G

H
?

 

            (3) 

The 𝑗 combinations of climate feedbacks processes considered here are:  

(1) 𝜆#(I&, the combined fast feedbacks operating over response timescales approximately linked to the residence timescale of 

water vapour in the atmosphere (van der Ent and Tuinenberg, 2017), including clouds, water vapour-lapse rate, snow and 80 

sea-ice surface albedo; and  

(2) 𝜆I)'J, the combined slow feedbacks operating over a multi-decadal timescale that may, for example, be linked to a 

surface warming pattern adjustment (e.g. Andrews et al., 2015).  

 

The 𝑖 sources of radiative forcing used in eq. (3) are:  85 

(1) Atmospheric CO2 forcing, calculated from CO2 concentrations using 𝑅674 = 𝑎674Δ𝑙𝑛CO4 after IPCC (2013);  

(2) Combined forcing from other well mixed greenhouse gases, 𝑅NOPQP, including methane, nitrous oxides each calculated 

from concentrations after Etminan et al. (2016) (see Supplementary Information), and Halocarbons after IPCC (2013);  

(3) Combined direct and indirect anthropogenic aerosol forcing, linked annual aerosol emission rates (Myhre et al., 2013; 

Smith et al., 2018, see Supplementary Information);  90 

(4) Volcanic aerosol radiative forcing, calculated after 1850 from volcanic Aerosol Optical Depth (AOD) using 𝑅R')B(A?B =

−(19 ± 0.5)AOD (Gregory et al., 2016) and before 1850 from the global radiative forcing timeseries used in the Reduced 

Complexity Model Intercomparison Project (RCMIP) phase 1 (Nicholls et al., 2020 in press), with identical relative 

uncertainty imposed both pre and post 1850; 

(5) Solar forcing; and  95 
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(6) Internal variability in Earth’s energy imbalance, imposed using AR1 noise with coefficients chosen to approximate the 

properties of monthly and yearly average noise from Trenberth et al. (2014).  

 

When radiative forcing from source 𝑖 is not increasing in magnitude between times 𝑡 and 𝑡 + 𝛿𝑡, |𝑅?(𝑡 + 𝛿𝑡)| ≤ |𝑅?(𝑡)|, the 

𝑗th combination of climate feedback processes evolves according to, 100 

 

𝜆?,G(𝑡 + 𝛿𝑡) = 𝜆?,G(𝑡) + [𝜆G
"\]?) − 𝜆?,G(𝑡)^ _1 − exp _

−𝛿𝑡
𝜏G
dd 

            (4) 

However, when radiative forcing from source 𝑖 is increasing in magnitude, |𝑅?(𝑡 + 𝛿𝑡)| > |𝑅?(𝑡)|, climate feedback 𝜆?,G 

evolves from 𝑡 to 𝑡 + 𝛿𝑡 according to, 105 

 

𝜆?,G(𝑡 + 𝛿𝑡) = f
𝑅?(𝑡)

𝑅?(𝑡 + 𝛿𝑡)
f g𝜆?,G(𝑡) + [𝜆G

"\]?) − 𝜆?,G(𝑡)^ _1 − exp_
−𝛿𝑡
𝜏G
ddh 

            (5) 

Thus, from eqns. (3), (4) and (5), any additional radiative forcing acts instantaneously at the Planck feedback in the first 

time-step it is applied, and then evolves over the e-folding response timescales 𝜏G  towards the equilibrium climate feedback, 110 

𝜆"\]?)?ij?]k = 𝜆@)(ABC + 𝜆#(I&
"\]?) + 𝜆I)'J

"\]?). Since (5) is applied separately for each of the 𝑗 sources of radiative forcing, the 

framework used here allows different values of climate feedback at any point in time for each source of radiative forcing.  

 

This model of climate feedbacks responding to imposed radiative forcing over multiple response timescales, eqns. (3), (4) 

and (5), produces a time-evolving effective climate feedback, (1), and time-evolving Effective Climate Sensitivity, (2), in 115 

response to a prescribed forcing scenario. Here, the transient climate response, TCR, is calculated as the 11-year average 

warming centred at the year of CO2 doubling for a scenario with a 1 per cent per year rise in CO2 and no other forcing  

(hereafter: 1pctCO2 scenario).  

 

3 Generation of the prior and posterior ensembles 120 

We generate probabilistic prior and posterior model ensembles with varied model input parameters using Bayes’ theorem. 

The joint posterior probability that the climate system parameters 𝑋 have a specific set of values 𝑋′ given background 

information 𝐼 and observations of the climate system {𝑜𝑏𝑠}, 𝑝𝑟𝑜𝑏(𝑋 = 𝑋′|{𝑜𝑏𝑠}, 𝐼), is expressed using Bayes’ theorem, 

 

 125 
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𝑝𝑟𝑜𝑏(𝑋 = 𝑋′|{𝑜𝑏𝑠}, 𝐼) ∝ 𝑝𝑟𝑜𝑏({𝑜𝑏𝑠}|𝑋 = 𝑋′, 𝐼) × 𝑝𝑟𝑜𝑏(𝑋 = 𝑋′|𝐼) 

            (6) 

where: 

(1) 𝑝𝑟𝑜𝑏(𝑋 = 𝑋′|𝐼) is the joint prior probability that 𝑋 = 𝑋′ for climate system parameter values (Supplementary Table S1; 

Fig. 2 solid lines for 𝜆@)(ABC, 𝜆w(I&
"\]?) and 𝜆x)'J

"\]?)); and 130 

(2) 𝑝𝑟𝑜𝑏({𝑜𝑏𝑠}|𝑋 = 𝑋′, 𝐼) is known as the likelihood function and expresses the probability of obtaining the observations in 

{𝑜𝑏𝑠} for the given joint parameter values 𝑋 = 𝑋′ and background information 𝐼. Here, this is estimated from where the 

simulated model observables for 𝑋 = 𝑋′ and 𝐼 lie on the probability distributions for the real observables (Supplementary 

Table S2). 

 135 

Here, we use large ensemble simulations of the Warming Acidification and Sea level Projector (WASP) model (Goodwin, 

2016), adopting the updated version of Goodwin (2018) with explicitly time-evolving climate feedbacks (eqns. 3, 4 and 5). 

This version of WASP does not contain a single parameter for ECS  or 𝜆"## at some time 𝑡, eqns. (1, 2). Instead, the values 

of ECS and  𝜆"## emerge over time in the model in response to the forcing scenario from a combination of multiple 

prescribed climate system parameters (eqns. 3, 4, 5). The WASP model contains a 5-box representation of ocean heat and 140 

carbon uptake, with an ocean circulation that is varied between ensemble members but remains constant in time within each 

ensemble member (Supplementary Table S1).  

 

We form a prior model ensemble where a total of 25 model input parameters independently varied between simulations 

(Supplementary Table S1), to represent the prior climate system parameter distribution 𝑋, eq. (6). Five of the input 145 

parameters within 𝑋 describe how climate feedback responds to an imposed radiative forcing (𝜆@)(ABC, 𝜆#(I&
"\]?), 𝜆I)'J

"\]?),𝜏w(I&  

and 𝜏x)'J) with a 6th input parameter (the radiative forcing coefficient for CO2) converting this climate feedback to Effective 

Climate Sensitivity (Supplementary Table S1, eq. 2).  

 

A further thirteen of the 25 model input parameters varied within 𝑋 relate to uncertainty in historic radiative forcing 150 

(Supplementary Table S1). The WASP model is historically forced until 2014 (following the ssp585 scenario thereafter: 

O’Neill et al., 2016) with atmospheric concentrations of greenhouse gasses; direct and indirect radiative forcing from 

anthropogenic aerosols; radiative forcing from volcanic aerosols; and solar forcing (see Supplementary Information). The 

radiative forcing from each component (aside from solar forcing) is varied between simulations in the prior ensemble 

(Supplementary Table S1) to approximate historic uncertainty (Myhre et al., 2013; Etminan et al., 2016; Smith et al., 2018; 155 

Gregory et al., 2016).  
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Normal input distributions (Supplementary Table S1) are used to represent historic uncertainty in: the radiative forcing 

sensitivity to greenhouse gas concentrations (Myhre et al., 2013; Etminan et al., 2016); the direct radiative forcing sensitivity 

to anthropogenic aerosol emissions for six separate aerosol types (Myhre et al., 2013), and the radiative forcing sensitivity to 160 

volcanic aerosol optical depth (Gregory et al., 2016). However, a skew-normal input distribution is used to represent historic 

uncertainty in the indirect radiative forcing from anthropogenic aerosols (Supplementary Table S1), since there is a long tail 

of possibly strong-negative radiative forcing from this effect (IPCC, 2013).  

 

We generate prior ensembles containing 6.825 × 10| ensemble members, with the 25 input parameters independently varied 165 

such that the relative frequency distributions of each input parameter are set to the assumed prior probability distribution, 

𝑝𝑟𝑜𝑏(𝑋 = 𝑋′|𝐼) in eq. (6) (Supplementary Table S1; Fig. 2 solid lines for 𝜆@)(ABC, 𝜆w(I&
"\]?) and 𝜆x)'J

"\]?)). Observational tests are 

then used to form a likelihood function and extract a subset of the prior ensemble simulations into the posterior ensembles 

(Supplementary Table S2). 

 170 

There are 𝑛 = 12 observational constraints within {𝑜𝑏𝑠} (Supplementary Table S2). The probability of obtaining the 𝑘th 

observational constraint given 𝑋 = 𝑋′ and 𝐼 is calculated assuming Gaussian uncertainty in the observable (e.g. Annan and 

Hargreaves, 2020), 

𝑝𝑟𝑜𝑏({𝑜𝑏𝑠}C|𝑋 = 𝑋′, 𝐼) ∝ 𝑒
�(�����)�

4��
�

 

            (7) 175 

where 𝜇C and 𝜎C are the observational mean and standard deviation uncertainty of observable 𝑘 (Supplementary Table 2), 

and 𝑥C is the simulated value of the observable for 𝑋 = 𝑋′ and 𝐼. To calculate the overall probability of obtaining all 𝑛 

observational constraints within {𝑜𝑏𝑠} given 𝑋 = 𝑋′ and 𝐼, we multiply the probabilities for all {𝑜𝑏𝑠}C , 

𝑝𝑟𝑜𝑏({𝑜𝑏𝑠}|𝑋 = 𝑋′, 𝐼) =�𝑝𝑟𝑜𝑏({𝑜𝑏𝑠}C|𝑋 = 𝑋′, 𝐼)
A

C��

 

            (8) 180 

Four different ensembles are generated using different combinations of surface temperature (HadCRUT4 and Cowtan&Way: 

Fig. 1a) and heat content (NODC and Cheng et al.: Fig. 1b) datasets to construct the likelihood function that acts as a 

constraint on the posterior (eq. 6). These model ensembles are termed HadCRUT4 + NODC; HadCRUT4 + Cheng et al.; 

Cowtan&Way + NODC; and Cowtand&Way + Cheng et al. (Supplementary Table S2). For each of these four ensembles, 

the probability of a prior simulation being included within the posterior ensemble is proportional to 𝑝𝑟𝑜𝑏({𝑜𝑏𝑠}|𝑋 = 𝑋′, 𝐼), 185 

eqn. (8): a simulation is accepted into the posterior ensemble if the value of 𝑝𝑟𝑜𝑏({𝑜𝑏𝑠}|𝑋 = 𝑋′, 𝐼), assessed using (8), is 

greater than a number randomly drawn between 0 and some number greater than the maximum value of 

𝑝𝑟𝑜𝑏({𝑜𝑏𝑠}|𝑋 = 𝑋′, 𝐼) achieved in that prior ensemble. 
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We adopt a normal prior distribution for 𝜆@)(ABC, informed by Earth’s global mean surface temperature (Jones and Harpham, 190 

2013) and radiation budget (Trenberth et al., 2014) (Fig. 2, solid black line). We adopt uniform prior distributions of 𝜆w(I&
"\]?) 

and 𝜆x)'J
"\]?) (Fig. 2, solid blue and red lines), thus assuming that any value within the boundaries is equally likely before we 

consider the observations, {𝑜𝑏𝑠} (eq. 6). Our boundaries for the uniform distributions of 𝜆w(I&
"\]?) and 𝜆x)'J

"\]?) are set wide 

enough such that the posterior distributions are not significantly affected by the boundaries (Fig. 2, red and blue), but narrow 

enough such that the problem is computationally tractable. 195 

4 Results 

In From the initial 6.825 × 10| simulations in each prior ensemble, a total of 23804 simulations are accepted into the 

HadCRUT4 + NODC posterior ensemble; 10681 into the HADCRUT4 + Cheng et al. posterior ensemble; 1561 into the 

Cowtan&Way + NODC posterior ensemble; and 781 into the Cowtan&Way + Cheng et al. posterior ensemble. Fewer 

simulations are accepted into the posterior ensembles that use likelihood function terms, 𝑝𝑟𝑜𝑏({𝑜𝑏𝑠}C|𝑋 = 𝑋′, 𝐼) in eq. (7), 200 

with smaller observational uncertainty, 𝜎C (Supplementary Table S2). 

 

The posterior distributions reveal both the Planck feedback and fast feedback strengths are insensitive to the combination of 

temperature and heat content datasets used within the likelihood function: 𝜆@)(ABC = 3.2 ± 0.1 Wm-2K-1 for all ensembles 

(mean ± standard deviation), while 𝜆w(I&
"\]?) = −1.2 ± 0.6 Wm-2K-1 for the HadCRUT4 + NODC ensemble and 𝜆w(I&

"\]?) =205 

−1.2 ± 0.5 Wm-2K-1 for the other three ensembles.  However, the different combinations of warming and heat content 

datasets used in the likelihood function result in different distributions for the slow feedback strengths.  

 

For ensembles constrained by HadCRUT4 the slow feedback strength distributions have larger variance and less negative 

means: 𝜆x)'J
"\]?) = −0.4 ± 1.0 Wm-2K-1 and 𝜆x)'J

"\]?) = −0.4 ± 0.9 Wm-2K-1 when HadCRUT4 is combined with NODC and 210 

Cheng et al. respectively. When Cowtan&Way is used to constrain temperature, the slow feedback strength distributions 

have smaller variance and more negative means: 𝜆I)'J
"\]?) = −0.7 ± 0.8 Wm-2K-1 and 𝜆I)'J

"\]?) = −0.8 ± 0.8 Wm-2K-1 when 

Cowtan&Way is combined with NODC and Cheng et al. respectively. Noting that the sign convention is such that negative 

𝜆I)'J
"\]?) values contribute more positive climate feedback, the interpretation considered here is that the increased recent 

warming in Cowtan&Way relative to HadCRUT4 (Fig. 1) implies that surface warming will receive more amplification, or 215 

less damping, from slow climate feedbacks into the future (Fig. 2, compare red dashed and dotted lines). 
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4.1 The Effective Climate Sensitivity and Transient Climate Response 

The ECS is analysed by forcing the four posterior ensembles with an instantaneous step-function quadrupling of atmospheric 

CO2 (hereafter: 4xCO2 scenario) and applying eq. (2). The value of ECS changes over time (Figs. 3,4) as the fast and slow 

climate feedbacks evolve in response to the imposed radiative forcing (eqns. 3, 4, 5).  220 

 

For each combination of datasets used, the ECS is best constrained from the historic observational reconstructions on 20-

year timescale (Figs. 3, 4a, Table 1). These 20-year response timescale ECS estimates are also similar between different 

datasets: varying from 2.0 °C (1.6 to 2.5 °C at 90% range) for the HadCRUT4 and NODC datasets to 2.2 °C (1.8 to 2.7 °C) 

for the Cowtan&Way and Cheng et al. dataset combination. 225 

 

The distributions see a general increase in ECS out to 50-year and 100-year timescales, with greater uncertainty (Figs. 3,4) 

due to the uncertainty in how slow climate feedback will evolve (Fig. 2).  The TCR is analysed by forcing our posterior 

ensembles with a scenario with a 1pctCO2 scenario and recoding the surface warming for each ensemble member for the 11-

year average centred on the year in which CO2 reaches twice its initial value (Fig. 5).   230 

 

4.2 Variation in the posterior model ensembles 

The observational records provide constraints on the parameters of the posterior ensembles that manifest not only as 

posterior distributions for these parameters but also as relationships between them, as well as between model parameters and 

key model outputs of interest (such as ECS(t)). While the correlation structure of the 25 parameters’ joint posterior 235 

distribution is generally quite complex, some key structures emerge that indicate how ECS and TCR uncertainties might be 

reduced. 

 

4.2.1 Correlations of model parameters and outputs 

We assemble the four observationally-consistent ensembles into a single meta-ensemble, where each model realization is 240 

weighted inversely to the number of members in its individual ensemble such that each of the four observational 

combinations is weighed equally (henceforth all analyses in this section are weighted, i.e. weighted correlations, weighted 

principal component analysis, and weighted stepwise regression). We then first examine the correlations between individual 

model parameters. Most notably, we find two strongly compensating pairs of model parameters. First, r1 (the ratio of global 

near-surface warming to global sea surface warming at equilibrium) and r2 (the ratio of global whole-ocean warming to 245 

global sea surface warming at equilibrium) strongly compensate (𝜌 = −0.83), indicating the ratio of near-surface warming 

to global whole-ocean warming is tightly constrained by these datasets. Second, 𝜆#(I&
"\]?)  and 𝜆I)'J

"\]?) are also strongly 

compensating (𝜌 = −0.89). Neither of these are surprinsing as they reflect the primary constraints of the observations, i.e. 

ocean and near-surface warming histories, but the latter does indicate that a better-constrained fast feedback parameter 𝜆#(I&
"\]?) 
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would directly reduce uncertainty on 𝜆I)'J
"\]?) and thereby ECS on multidecadal and centennial timescales. This is further 250 

corroborated by weaker but appreciable correlations between 𝜆@)(ABC and 𝜆#(I&
"\]?) (𝜌 = −0.46) and 𝜆I)'J

"\]?) (𝜌 = 0.37). r1 also 

correlates appreciably with the timescale of upper ocean carbon exchange (𝜏]��"j , 𝜌 = 0.35) and r2 also correlates 

appreciably with the CO2 radiative forcing coefficient (𝑎674, 𝜌 = 0.42), while 𝜆I)'J
"\]?) correlates appreciably with the aerosol-

cloud interaction radiative forcing coefficient (Raci:2011) which in turn correlates appreciably with the SOx aerosol radiative 

forcing coefficient (𝛾("j'�x7�, 𝜌 = 0.47). Other correlations are significant due to the large meta-ensemble size but are not 255 

particularly strong (|𝜌| < 0.28) so are not mentioned here (note that this threshold and the 0.48 threshold below are 

arbitrarily chosen; in this section we are only interested in and therefore only report the strongest correlations). 

 

Model outputs are in general correlated in expected fashions with each other and with model parameters. The time-average 

global mean Δ𝑇’s before 1940 are tightly correlated (𝜌 ∈ (0.60,0.85)), while the Δ𝑇’s on either side of the 1961-1990 260 

reference temperature (1960-1979 vs. 1980-1999) strongly compensate (𝜌 = −0.92); ocean heat content from 700-2000m is 

well-correlated with total ocean heat content (𝜌 = 0.64). The ECS on a 50-year timescale, ECS50, is well correlated with 

ECS20 (𝜌 = 0.50) and especially with ECS100 (𝜌 = 0.93); we therefore focus on ECS20 and ECS100 hereafter. ECS100 is 

correlated with 𝜆I)'J
"\]?) (𝜌 = −0.56), and ocean heat and carbon content are correlated with the upper ocean tracer exchange 

timescales and the warming ratios r1 and r2 (𝜌 ∈ (0.52,0.63)). 19th-century sea surface temperature anomaly is also strongly 265 

correlated with r1 (and hence strongly anticorrelated with r2). Other correlations between model outputs or between model 

outputs and parameters are significant due to the large meta-ensemble size but are weaker than the above (|𝜌| < 0.48) so are 

not discussed here.  

 

4.2.2 Principle components 270 

Correlations between model parameters’ posteriors imply that the dimensionality of the parameter space can be reduced and 

that the observational constraints collapse the posterior solution into a parameter space with fewer degrees of freedom. 

Principal Component Analysis, PCA (Jolliffe, 1986; n.b. we do not describe the method here as it is well-described in many 

textbooks such as Jolliffe,1986) is a straightforward, ubiquitous means to identify these degrees of freedom, and is justifiable 

here in the absence of strongly nonlinear model equations and given the Gaussian or near-Gaussian likelihoods and priors. 275 

We perform a PCA on the model parameters’ joint posterior; the results are presented in Figure 6. In the scree plot (fig. 6a) 

there is an obvious break point at the fifth principal component (PC), indicating the first four PCs are interpretable and the 

remaining are unstructured variations (Cattell, 1966). These PCs are shown in fig. 6b-e, with loadings of parameters grouped 

into feedbacks, oceanic parameters, aerosol sensitivities, and greenhouse gas sensitivities (we include the full PCs in the 

Supplemental Information (Supplementary Figures S1-S4) for completeness). The first three of these PCs are dominated by 280 

feedbacks, radiative forcing from aerosols and radiative forcing from GHGs; the fourth PC is dominated by compensation 

between the ventilation timescales of different ocean fractions. (PC5 is similarly ocean-dominated; see Figure S5.) 
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Altogether these PCA results suggest that the observational constraints used herein collapse the 25 model parameters around 

a four-dimensional subspace, and that these four dimensions reflect the balance between the effects of climate feedbacks, 

greenhouse gases, and aerosols on atmospheric and oceanic warming, as well as the structure of the large-scale ocean 285 

circulation. 

 

Note also there are numerous ways to quantify the number of interpretable or meaningful PCs resulting from a PCA 

(Jackson, 1993); the first four PCs we focus on here only explain 30.1% of the total variance in the dataset, but the decisive 

break in the scree plot (fig. 6a) indicates strong evidence that these PCs are qualitatively different than the remaining PCs 5-290 

25. We interpret the remaining variance in the data as reflective of the large amount of parametric uncertainty left in these 

models beyond what the observations herein can constrain, attesting to the importance of large ensemble simulations as 

employed here for quantifying uncertainty in ECS and TCR. 

 

4.2.3 Stepwise regression 295 

It is also of interest to what extent the model outputs are directly predictable from or explicable by the individual model 

parameters and/or PCs. Given the roughly Gaussian and linear model equations, multilinear regression is a suitable approach 

to identifying these links; in particular stepwise regression (Draper & Smith, 1981) follows an automatic procedure of 

including and removing explanatory variables from the model fit to identify an optimal combination. We perform stepwise 

regression to predict the model outputs from the model parameters and/or the first , (de)selecting explanatory variables using 300 

the Bayesian Information Criterion (Schwartz, 1978) and also including interactions between model parameters (i.e. their 

products). 

 

We find ECS100 to be significantly a function of all of PC1-4 and their interactions, with an 𝑅4 = 0.24. Including only PC1-3 

only reduces R2 by 0.0019, i.e. 𝑅4 = 0.24 still. While this is not an especially good fit, it is 98.1% of the variance in the 305 

model parameters explained by these PCs (24.2%), i.e. almost all of the model parameter variance these PCs explain directly 

translates to explained variance in ECS100. In combination with the PCA results, this suggests the observations used here 

collapse the model parameters around four degrees of freedom, and that ECS100 is proportional to these first three degrees of 

freedom and their interactions, with the remaining variance in ECS100 due to the remaining variance in the model parameters. 

This implies that the observational constraints used here directly constrain ECS100 in our modeling approach, with very little 310 

information lost through constraining model parameters. In contrast, other model outputs (e.g. ECS20 or the whole-ocean 

carbon content) are poorly predicted by these PCs (𝑅4 = 0.10 or less). 

 

 

We also performed stepwise regression of model outputs against the 25 model parameters. We found ECS100 to be a 315 

significant function of only seven model parameters (𝑅4 = 0.40; the three feedbacks 𝜆, the whole-ocean to sea-surface 
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warming ratio r2, the aerosol forcing coefficients 𝛾�Q� and 𝛾��O�76 , and the CO2 forcing coefficient 𝑎674). ECS20 by 

contrast was not a significant function of  𝛾�Q� or r2 but was a significant function of the slow feedback timescale 𝜏I)'J  (as 

well as the 𝜆s and 𝑎674; 𝑅4 = 0.40). This implies both that ECS is not strongly dependent on the other parameters in the 

model used here, and also that there is a large amount of variation in ECS that can be reduced by better constraining these 320 

parameters. In contrast, other model outputs are sensitive to more model parameters and also more predictable; for instance 

the whole-ocean carbon content increase from 1982-2018 (Δ𝐶) is a significant function of 20 model parameters (𝑅4 = 0.97). 

For this latter case, these various dependencies can be simplified to some extent into a single parameter, the fraction of the 

ocean which is ventilated over a given timescale 𝑉R"A&,& , which is a function of the different ocean boxes’ volumes and 

exchange timescales (see Supplementary Information); on the intermediate 50-year timescale 𝑉R"A&,�� alone explains 75% of 325 

the variance in Δ𝐶. This is likely due to the simple carbon cycle in the model, whereas a more complex representation of the 

carbon cycle model would have numerous dependencies not considered here that would decrease the relative importance of 

𝑉R"A&,&  in determining Δ𝐶. Surprisingly, 𝑉R"A&,&  is not a notably good predictor of other properties of interest (ECS, OHC) and 

when included in the aforementioned analyses in this section does not meaningfully affect the results or their interpretation. 

 330 

5. Discussion 

Many studies have combined reconstructions of surface temperature and ocean heat uptake with estimates of radiative 

forcing to calculate the effective climate feedback during the historic period (e.g. Annan, 2015; Anan and Hargreaves, 2020; 

Bodman and Jones, 2016; Lewis and Curry, 2014; Skeie et al, 2018; Otto et al., 2013; Tokarska et al., 2020). However, 

climate feedback strengths evolve over time in complex climate models (e.g. Andrews et al., 2015), indicating that effective 335 

climate sensitivity values obtained from historic observations may not apply into the future.  

 

This study applies the historic observational record to constrain how effective climate sensitivity evolves on different 

response timescales (Figs. 3,4), utilising a model of independent climate feedback terms that respond to forcing over 

instantaneous (Planck), fast (several days) and slow (multi-decadal) timescales (eqns. 2,3,4). A Bayesian approach is 340 

adopted, where uniform prior probability distributions are applied for the fast and slow climate feedbacks (Fig. 2, 

Supplementary Table S1). Different temperature and ocean heat content observational datasets (Supplementary Table S2, 

eqns. 6,7,8) are applied to extract posterior probability distributions (Figs. 2). We then use these posterior probability 

distributions to evaluate effective climate sensitivity (ECS) and transient climate response (TCR) from 4xCO2 and 1pctCO2 

forcing scenarios respectively. 345 

 

Our estimates of ECS on a 20-year timescale is directly comparable to estimates of climate sensitivity made from historical 

constraints (e.g. Otto et al.,  2013; Lewis and Curry, 2014), without explicitly considering the impact of additional slow 

climate feedbacks that may not have had time to equilibrate in the present day. 
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 350 

Our estimates of ECS on a 100-year timescale is directly comparable to the climate sensitivity estimates evaluated in 

complex climate model simulations from simulations lasting order 100 years, for example using the Gregory et al. (2004) 

method, and directly comparable to estimates of climate sensitivity from the palaeo-record where any longer, 1000-year, 

Earth system sensitivity feedbacks have been eliminated (e.g. Rohling et al., 2012; 2018). 

 355 

We find that the differences in temperature and heat content datasets have a significant impact on the implied probability 

distributions of ECS (Figs. 1,3,4; Table 1). However, the implied probability distributions for TCR are sensitive to 

differences in temperature datasets but not to the differences in ocean heat content datasets (Figs. 1,5; Table 1). 

 

The Cowtan&Way (Cowtan and Way, 2014) temperature reconstruction implies a larger ECS and TCR than HadCRUT4 360 

(Figs. 3,4,5; Table 1), because the additional recent warming in Cowtan&Way (Fig. 1a) implies more positive slow climate 

feedbacks (Fig. 2). The Cheng et al. (2017) ocean heat content reconstruction implies larger ECS than the NODC 

reconstruction (Fig. 3,4; Table 1), because the additional ocean heat content uptake (Fig. 1b) in Cheng et al. (2017), with 

identical historic warming, must be balanced by a larger ECS (eq. 2). However, the different heat content datasets make 

almost no impact on TCR (Fig. 5; Table 1), possibly because larger historic heat content also implies larger heat uptake on a 365 

1pctCO2 scenario and this balances any warming impact of a larger ECS. 

 

Our method constrains ECS over multiple response timescales (Fig. 3; Table 1). Our constraints on ECS over a 100-year 

response timescale (ECS100: Table 1) is are directly comparable to previous reviews of climate sensitivity in the literature in 

AR5 (IPCC, 2013) and Sherwood et al. (2020). The IPCC (2013) AR5 estimate of ECS has a 66% range of 1.5 to 4.5 K 370 

(IPCC, 2013), while the recent Sherwood et al. (2020) Bayesian review has a narrower baseline 66% range of 2.6 to 3.6 K. 

The Sherwood et al. (2020) range removes both the lower portion of the IPCC ECS range (from 1.5 to 2.5 K) and the upper 

portion (from 3.7 to 4.5 K) at 66% confidence, suggesting a similar best estimate but with reduced uncertainty than IPCC 

(2013).  

 375 

Our posterior 66% ranges for ECS100 constrained by historical observations show a more complicated link to the IPCC 

(2013) range that depends on the combination of statistical interpretations of historic temperature and heat content 

observations used (Table 1). When applying the HadCRUT4 temperature and NODC heat content datasets, our method 

provides a 66% range on ECS100 of 1.7 to 3.2 K, in agreement with the lower portion of the IPCC (2013) range. However, 

when the Cowtan&Way temperature and Cheng et al. heat content datasets are used our method supports the upper end of 380 

the IPCC (2013) range, from 2.3 to 4.2 K (Table 1; Figure 3). Therefore, we find that historical observations of temperature 

and ocean heat content support the IPCC (2013) range for Equilibrium Climate Sensitivity, but that different statistical 

interpretations of how historical observations produce global mean changes support different portions of the IPCC (2013) 
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ECS range. This finding demonstrates how differences in the statistical interpretations of global mean surface temperature 

and global ocean heat content changes from underlying observations lead to different implications for climate sensitivity and 385 

future warming.  

 

Code availability: The WASP model code used here is available for download at http://doi.org/10.5281/zenodo.4088074.  

 

Data availability: The datasets used (Supplementary Table S2) are publicly available: HadCRUT4 is available at 390 

https://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html. Cowtan and Way v2 ‘HadCRUT4 infilled by 

kriging’ is available at https://www-users.york.ac.uk/~kdc3/papers/coverage2013/had4_krig_annual_v2_0_0.txt; NODC is 

available at https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/. Cheng et al. is available at 

http://159.226.119.60/cheng/images_files/IAP_OHC_estimate_update.txt. HadSST3 is available at 

https://www.metoffice.gov.uk/hadobs/hadsst3/data/download.html.  The Global Carbon Budget 2018 data is available at 395 

https://doi.org/10.18160/gcp-2018. 
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 565 
Figure 1. Surface temperature and ocean heat content anomalies from 1955 from datasets and dataset-constrained simulations. (a) 
Historic surface warming relative to the 1961-1990 average in the HadCRUT4 and Cowtan&Way surface temperature datasets 
(solid lines) and posterior ensemble simulations (dotted lines show ensemble medians, shading show 95% ensemble ranges) 
constrained by each temperature dataset along with the NODC ocean heat content dataset. (b) Ocean Heat Content (OHC) 
anomaly in the upper 700m of the global ocean in the NODC and Cheng et al. datasets (solid lines) and posterior ensemble 570 
simulations (dotted lines show ensemble medians, shading show 95% ensemble ranges) constrained by each OHC dataset along 
with the HadCRUT4 temperature dataset. 
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Figure 2: Prior and posterior probability densities for the Planck climate feedback (black), fast climate feedback (blue) and slow 
climate feedback (red). The prior distributions (thin solid lines) and posterior distributions when constrained by HadCRUT4 + 575 
NODC datasets (dashed lines) and Cowtan&Way + NODC datasets (dotted lines) are shown.  

 

 

Figure 3: Effective Climate Sensitivity (ECS) from 10 to 100-year response timescales following a 4xCO2 forcing scenario 
constrained by different combinations of observational reconstructions. Solid line is median, dashed line and dark shading is 66% 580 
range and dotted lines and light shading is 95% range. 
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Figure 4: Probabilistic estimates of Effective Climate Sensitivity for different combinations of observational constraints over (a) a 
20-year response timescale, (b) a 50-year response timescale and (c) a 100-year response timescale. When constrained by the 585 
HadCRUT4 temperature record the most likely (modal) ECS value is ~2.0 K on all timescales. For the Cowtan&Way temperature 
record the most likely ECS value is ~2.1 K on 20-year timescale rising to ~2.5 K on longer 50-year and 100-year timescales. 
 

 
Figure 5: Transient Climate Response (TCR) for combinations of temperature and heat content datasets, evaluated from 1pctCO2 590 
scenario using the 11-year average warming centred on the moment of CO2 doubling. 
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Figure 6: Principle Component Analysis of the posterior model ensembles. a) Scree plot of PC vs. variance explained. b-e) PCs 
simplified into climate feedbacks and their response timescales (Feedbacks); parameters describing ocean circulation and ocean 595 
heat and carbon transport (Ocean); the sensitivity of radiative forcing to aerosols (Aerosol sensitivities) and the sensitivity of 
radiative forcing to Green House Gasses (GHG sensitivities). White parts of the bar plots show the total positive and total negative 
contributions, green parts of bar plots show the sum of positive and negative contributions. PC1 reflects a how climate feedback 
and aerosol radiative forcing co-vary in the posterior ensemble, while PC2 reflects co-variation between climate feedback and 
GHG radiative forcing. PC3 reflects how climate feedbacks vary with both aerosol radiative forcing and GHG radiative forcing in 600 
the posterior ensemble. PC4 reflects how ocean circulation, heat and carbon uptake vary with aerosol forcing and climate 
feedback. 
 
 
 605 
 
 
 
 
 610 
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Dataset 
combination 

ECS on 20-year 
timescale (K) 

ECS on 50-year 
timescale (K) 

ECS on 100-year 
timescale (K) 

TCR (K) 

HadCRUT4  
+ NODC 

Median: 2.0 
 

66% CI: 1.8 to 2.3 
90% CI: 1.6 to 2.5 
95% CI: 1.5 to 2.6 

Median: 2.2 
 

66% CI: 1.8 to 2.7 
90% CI: 1.6 to 3.3 
95% CI: 1.5 to 3.6 

Median: 2.2 
 

66% CI: 1.7 to 3.2 
90% CI: 1.5 to 4.5 
95% CI: 1.4 to 5.4 

Median: 1.5 
 

66% CI: 1.4 to 1.7 
90% CI: 1.3 to 1.9 
95% CI: 1.2 to 1.9 

HadCRUT4  
+ Cheng et al. 

Median: 2.0 
 

66% CI: 1.8 to 2.3 
90% CI: 1.6 to 2.6 
95% CI: 1.6 to 2.7 

Median: 2.2 
 

66% CI: 1.8 to 2.9 
90% CI: 1.6 to 3.5 
95% CI: 1.6 to 4.0 

Median: 2.4 
 

66% CI: 1.8 to 3.5 
90% CI: 1.6 to 5.0 
95% CI: 1.5 to 6.0 

Median: 1.5 
 

66% CI: 1.4 to 1.7 
90% CI: 1.3 to 1.9 
95% CI: 1.3 to 2.0 

Cowtan&Way + 
NODC 

Median: 2.1 
 

66% CI: 1.9 to 2.4 
90% CI: 1.8 to 2.6 
95% CI: 1.7 to 2.7 

Median: 2.5 
 

66% CI: 2.1 to 3.0 
90% CI: 1.9 to 3.6 
95% CI: 1.8 to 3.9 

Median: 2.7 
 

66% CI: 2.1 to 3.8 
90% CI: 1.8 to 5.4 
95% CI: 1.7 to 6.4 

Median: 1.7 
 

66% CI: 1.5 to 1.8 
90% CI: 1.4 to 2.0 
95% CI: 1.4 to 2.0 

Cowtan&Way + 
Cheng et al. 

Median: 2.2 
 

66% CI: 1.9 to 2.4 
90% CI: 1.8 to 2.7 
95% CI: 1.7 to 2.8 

Median: 2.5 
 

66% CI: 2.1 to 3.3 
90% CI: 1.9 to 4.0 
95% CI: 1.8 to 4.3 

Median: 2.8 
 

66% CI: 2.1 to 4.3 
90% CI: 1.8 to 6.1 
95% CI: 1.7 to 7.1 

Median: 1.7 
 

66% CI: 1.5 to 1.9 
90% CI: 1.4 to 2.0 
95% CI: 1.4 to 2.1 

Table 1: Effective Climate Sensitivity (ECS, K) and Transient Climate Response (TCR, K) best estimate (median) and ranges 
(66%, 90% and 95% Confidence Intervals) under different observational constraints for surface warming and heat uptake. 615 
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